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Abstract

Latent Dirichlet Allocation (LDA) is one of the most popular topic-modeling
algorithms in use today. In this work, I describe a method for deriving the
posterior distribution used in LDA and create a hybrid model in which I
combine LDA with a baseline retrieval-augmented generation (RAG) model.
I find that this hybrid model outperforms the baseline RAG model in several
areas including accuracy and processing time. These results highlight the
potential for LDA to be incorporated in modern RAG-based models as a
means of extending their performance from closed-book question answering
(QA) tasks to open-domain QA tasks.



Contents

1 Introduction 1

2 Motivating Distributions 3
2.1 Beta Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Beta-Binomial Conjugacy . . . . . . . . . . . . . . . . . . . . 4
2.4 Dirichlet Distribution . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Multinomial Distribution . . . . . . . . . . . . . . . . . . . . . 6
2.6 Dirichlet-Multinomial Conjugacy . . . . . . . . . . . . . . . . 6

3 Latent Dirichlet Allocation 8
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Gibbs Sampling Derivation for LDA . . . . . . . . . . . . . . . 9

3.2.1 Joint Distribution . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Gibbs Sampler . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Posterior on θ and ϕ . . . . . . . . . . . . . . . . . . . . . . . 22

4 Retrieval-Augmented Generation 25
4.1 Dense Passage Retrieval . . . . . . . . . . . . . . . . . . . . . 27

5 Methods 29
5.1 Choosing Models . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 LDA Filtering Step . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Tuning Model Hyperparameters . . . . . . . . . . . . . . . . . 32
5.5 High-level Pipeline . . . . . . . . . . . . . . . . . . . . . . . . 32

i



6 Results 34
6.1 Results on Abridged SQuAD 2.0 Dataset . . . . . . . . . . . . 34
6.2 Comparing Results to Base QA Model . . . . . . . . . . . . . 37
6.3 Extending Results to Full SQuAD 2.0 Dataset . . . . . . . . . 38

7 Discussion 40

ii



Chapter 1

Introduction

In this paper, I begin by discussing the motivations behind Latent Dirichlet
Allocation (LDA), one of the most widely used topic modeling algorithms.
To explain its workings, I derive the Gibbs sampling distribution, which
provides a method for estimating the relevant posterior distribution and it-
eratively updating topic distributions in documents. Following this, I review
retrieval-augmented generation (RAG), a framework that has the potential
to improve large language model responses. To bridge LDA and RAG, I
conduct an experiment that incorporates LDA as a pre-processing step to
enhance retrieval efficiency in RAG. This experiment has practical implica-
tions such as improving model performance and reducing runtime. I conclude
by discussing the experiment’s results and highlighting potential future di-
rections for optimizing the model’s performance.

As the volume of unstructured textual data continues to grow, covering every-
thing from academic publications to social media commentary, there has been
an increased demand to organize and interpret this data. Simple keyword-
based retrieval methods depend primarily on exact term matches and often
overlook more nuanced themes in the data; meanwhile, manual annotation
efforts are impractical for large amounts of data. As a result, researchers
and practitioners have turned to methods such as topic modeling, which can
uncover complex latent semantic relationships in textual data.

Topic modeling is an unsupervised machine learning method that identifies
latent thematic structure in textual data by organizing documents into “top-
ics.” Topic modeling infers both the topic proportions that characterize each
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document and the word distributions that define each topic. This dual in-
ference process uncovers the latent thematic structure in the text, effectively
mapping high-dimensional text data into a lower-dimensional topic space.
Topic modeling can be used in a variety of real-world applications including
sentiment analysis, recommender systems, and information retrieval.

Latent Dirichlet Allocation (LDA) is a probabilistic topic modeling algo-
rithm, where documents are represented as mixtures of topics, and topics are
characterized by distributions over words. Given a collection of documents,
LDA seeks to infer both the underlying topics and the topic distribution for
each document. Because the posterior distribution of the latent topic vari-
ables in LDA is intractable (impossible to compute directly), approximation
techniques such as Gibbs sampling are used to estimate it. Gibbs sampling is
a Markov Chain Monte Carlo (MCMC) method that allows for iterative sam-
pling from the joint distribution by conditioning on all other variables except
for the current variable. Over time, Gibbs sampling converges to a stable
estimate of the posterior distribution over the latent topic assignments, en-
abling us to efficiently infer each document’s topic mixture and each topic’s
word distribution in LDA.
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Chapter 2

Motivating Distributions

In probability, discrete outcomes are often modeled by conjugate distribution
pairs. For instance, when flipping a coin n times, the binomial distribution
describes the probability of observing a given number of heads, while the beta
distribution serves as its conjugate prior, describing one’s uncertainty about
the coin’s bias before any flips occur. Similarly, when drawing multiple balls
from an urn containing various colors, the multinomial distribution specifies
the expected counts of each color, while the Dirichlet distribution provides
a conjugate prior by representing prior probabilities for every color cate-
gory. These conjugate relationships, beta-binomial for binary outcomes and
dirichlet-multinomial for non-binary scenarios, ensure that the posterior dis-
tribution remains in the same family as the prior. We will see later in Chap-
ter 3 how Latent Dirichlet Allocation (LDA) uses this dirichlet–multinomial
conjugacy to represent each document as a probabilistic mixture over latent
topics and each topic as a distribution over words.

2.1 Beta Distribution

The beta distribution is a family of continuous probability distributions
whose domain is the interval [0,1]. The distributions are parameterized by α
and β, which control the shape of the distribution. The beta distribution will
serve as the foundation for the sampling methods I describe in future sections
due to its relevance as a conjugate prior for the binomial distribution and its
relationship to the Dirichlet distribution. The pdf of the beta distribution is
given below:
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p(θ | α, β) = Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, where 0 ≤ θ ≤ 1

2.2 Binomial Distribution

The binomial distribution is a discrete probability distribution that describes
the number of successes in n independent Bernoulli trials, each of which has
a success probability, θ. In a single Bernoulli trial, the random variable takes
the value 1 with probability θ and 0 with probability 1 − θ. Thus, when
n = 1, the binomial distribution is simply the Bernoulli distribution. The
pmf of the binomial distribution is given below:

f(x | θ, n) =
(
n

x

)
θx(1− θ)n−x, where x = 0, 1, 2, · · · , n

where n represents the number of trials and θ ∈ [0, 1] represents the success
probability for each trial.

2.3 Beta-Binomial Conjugacy

The beta distribution is the conjugate prior distribution for several distri-
butions including the binomial distribution. Conjugate distributions arise
when, given a particular likelihood function, the posterior distribution is in
the same probability distribution family as the prior distribution. This prior
distribution is thus called the conjugate prior, which is represented by the
beta distribution in this case. The beta distribution is conjugate to the bi-
nomial likelihood.

In general, the posterior distribution can be written as an extension of Bayes
Rule, where the numerator is a joint probability:

p(θ | x) = p(x, θ)

p(x)
=

p(x|θ)p(θ)
p(x)
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where f(x | θ) represents the likelihood function and p(θ) represents the
prior distribution. The posterior is proportional to the joint probability
p(θ | x) ∝ p(x|θ)p(θ).

If we assume the likelihood comes from the binomial distribution and the
prior comes from the beta distribution, we can rewrite the posterior as the
following:

p(θ | x) ∝
(
n

x

)
θx(1− θ)n−x Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

=

(
n

x

)
Γ(α + β)

Γ(α)Γ(β)
θx+α−1(1− θ)n−x+β−1

It is important to note that we are only considering the numerator of the
posterior, which is why we use ∝ to represent proportionality instead of
equality. If we disregard the constants at the beginning and only consider
the terms in the result that contain θ, we notice that the result looks like
a beta pdf with new parameters α′ = x + α and β′ = n − x + β. Thus,
the posterior distribution with a binomial likelihood and a beta prior can
be characterized as a beta distribution θ | x ∼ Beta(x + α, n − x + β), so
it follows that the beta distribution is a conjugate prior for the binomial
distribution.

2.4 Dirichlet Distribution

The Dirichlet distribution is the multivariate generalization of the beta dis-
tribution. The Dirichlet distribution is parameterized by α and K where
α = (α1, · · · , αK) is a vector, and K represents the number of categories in
the probability vector. When K = 2, the Dirichlet distribution looks like a
beta distribution where α = α1 and β = α2. The Dirichlet distribution is
relevant for this paper because it is commonly used as a conjugate prior for
the multinomial distribution. The pdf of the Dirichlet distribution is given
below:

p(θ | α) = Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

θαi−1
i =

1

B(α)

K∏
i=1

θαi−1
i
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2.5 Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution,
as it models the number of successes for each of k categories in n indepen-
dent trials. The binomial distribution is a special case of the multinomial
distribution where k = 2. The categorical distribution is a special case where
n = 1 (multivariate generalization of the Bernoulli distribution). The multi-
nomial distribution comes into play when k > 2. The pmf of the multinomial
distribution is shown below:

p(X1 = x1, X2 = x2, · · · , Xk = xk) =
n!

x1!x2!...xk!

K∏
i=1

θxi
i =

Γ(n+ 1)∏K
i=1 Γ(xi + 1)

K∏
i=1

θxi
i

2.6 Dirichlet-Multinomial Conjugacy

Like the beta-binomial conjugacy, the dirichlet-multinomial conjugacy in-
volves a conjugate prior-posterior relationship, where the prior and posterior
distributions belong to the same family of distributions. However, unlike
the beta-binomial conjugacy, the dirichlet-multinomial conjugacy considers
generalizations of the beta and binomial distributions where k > 2, meaning
there are more than two categories.

Let θ = (θ1, θ2, · · · , θK) be the probabilities of a categorical variable with K
outcomes. The Dirichlet prior over θ is defined as:

p(θ|α) = 1

B(α)

K∏
k=1

θαk−1
k

where α = (α1, α2, · · · , αK) are the Dirichlet parameters.
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Assuming there are n independent trials, where the number of times the kth

outcome occurs is xk, the multinomial likelihood is:

p(X|θ) = n!

x1!x2!...xK !

K∏
i=1

θxk
i

where
∑K

k=1 xk = n

Now, we can substitute the multinomial likelihood and the Dirichlet prior to
compute the posterior:

p(θ|X) ∝
( K∏

i=1

θxk
i

)( K∏
k=1

θαk−1
k

)
=

K∏
k=1

θ
(αk+xk)−1
k

We observe that the posterior looks like a Dirichlet distribution with parame-
ters α′ = (α1+x1, α2+x2, · · · , αK+xK), so P (θ|X) ∼ Dirichlet(α1+x1, α2+
x2, · · · , αK + xK), demonstrating the dirichlet-multinomial conjugacy.
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Chapter 3

Latent Dirichlet Allocation

3.1 Overview

Introduced in Blei et al. (2003), Latent Dirichlet Allocation (LDA) is a gen-
erative probabilistic model of a corpus of text. The main idea of the model
is that documents are represented as random mixtures over latent topics,
where each topic is characterized by a distribution over words. Although
LDA provides a generative structure for the corpus, the resulting posterior
distribution is intractable. To solve this estimation problem, researchers used
an approach called Gibbs sampling to iteratively resamples each word’s topic
assignment from its conditional distribution given all other topic assignments.
Griffiths (2004).

The Gibbs sampler is a Markov Chain Monte Carlo (MCMC) algorithm used
to generate samples from a multivariate probability distribution when direct
sampling from the joint distribution is impractical. This method works by
iteratively sampling from the conditional distributions of individual variables
given all of the other variables. Each conditional distribution fixes the other
variables and therefore has a density function proportional to the full joint
density. For example, we can write the conditional distribution for some
variable X1 given all other variables X2, · · · , Xn using Bayes Rule, where the
numerator represents the joint distribution:

P (X1|X2, · · · , Xn) =
P (X1, X2, · · · , Xn)

P (X2, · · · , Xn)

The denominator is a constant with respect to X1 because it does not depend
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onX1. Thus, it is included in the normalization constant and is not accounted
for in the sampling. Now, the conditional distribution is proportional to the
joint distribution:

P (X1|X2, · · · , Xn) ∝ P (X1, X2, · · · , Xn)

Because of this property, we can iteratively sample from conditional distri-
butions, which are often easier to compute than the full joint distribution.
By iteratively drawing each variable from its conditional distribution so that
each update uses the most recent values of the other variables, Gibbs sampler
gradually explores the full joint space. We continue this cycle until conver-
gence, meaning we run enough iterations for the Markov chain to stabilize
(and lose memory of the starting values), so our collected samples can accu-
rately reflect the true posterior distribution.

In the context of LDA, the Gibbs sampler is used to approximate the posterior
distribution of the topic assignments Z, which are latent variables. The Gibbs
sampler approximates this posterior distribution by iteratively sampling the
topic assignments from their conditional distributions given the observed
words W , the hyperparameters α and β, and the topic assignments of all the
other tokens.

3.2 Gibbs Sampling Derivation for LDA

This section is derived from Mukherjee (2016).

Below is a brief list of the notations that will be appear in the derivations:

Notations:
D: # of documents
N : # of words per document (Nd for dth document)
K: # of topics
V : set of unique words/vocabulary size
θd = {θd,1, θd,2, · · · , θd,K}: topic distribution for document d
ϕk = {ϕk,1, ϕk,2, · · · , ϕk,V }: word distribution for topic k
zd,n: latent topic assignment to nth word of document d (also called zi where
i is a token indexed at a particular word and document)
wd,n: n

th word of document d (also called wi)
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Z = {zd,n}: set of latent topic assignments
W = {wd,n}: set of observed words in the corpus
Θ = {θd}: set of document-topic distributions
Φ = {ϕk}: set of topic-word distributions

3.2.1 Joint Distribution

I start by deriving the joint distribution P (W,Z;α, β), which defines the
probability of both the observed words W and the latent topic assignments
Z given parameters α and β. Gibbs sampling iteratively samples topic as-
signments from conditional probabilities, which are derived from the joint
distribution, so calculating the joint distribution is crucial for ensuring the
chain eventually converges to the true LDA posterior distribution. The con-
ditional distribution is proportional to the joint distribution:

P (zi = k′|Z−i,W ) ∝ P (W,Z)

The above conditional represents the probability that the topic of ith token is
k′ given the topic assignments for all other tokens as well as all the words in
the corpus. The full conditional probability for the Gibbs sampler is derived
throughout this section and provided in equation 19.

The joint distribution can be decomposed into the following:

P (W,Z;α, β) = P (W |Z)P (Z) = I1 × I2

I define I1 as the conditional probability of the observed words W given the
latent topic assignments Z and I2 as the unconditional probability of the set
of latent topic assignments Z. In both I1 and I2, we integrate over a set of
distributions to find the desired probability:

I1 = P (W |Z) =
∫

P (W |Z,Φ)P (Φ) dΦ (I1)

I2 = P (Z) =

∫
P (Z|Θ)P (Θ) dΘ (I2)
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I will solve for I2 first:

I2 = P (Z) =

∫
P (Z|Θ)P (Θ)dΘ

where Θ = {θ1, θ2, . . . , θD} is the set of all document-topic distributions in
the corpus. For example, θ1 represents the distribution of topics in document
1, θ2 represents the distribution of topics in document 2, and so on.

Note that Θ is a D x K matrix where each row θd = {θd,1, θd,2, . . . , θd,K}
represents the topic distribution for document d. Each element of the matrix
can be represented as the probability that topic k is assigned to a randomly
chosen word in document d. For example, θd,1 represents the probability that
topic 1 is assigned to a randomly chosen word in document d.

Next, let’s assume a prior distribution such that θd ∼ Dirichlet(α), meaning
that for each document d, we draw its topic distribution θd from a Dirich-
let distribution with some parameter vector α. Further, let’s assume the
document-topic distributions are independent across documents. We can
now write the probability of the set of document-topic distributions as the
product of probabilities representing each individual document-topic distri-
bution:

P (Θ) =
D∏

d=1

P (θd|α)

Next, recall that Θ = {θ1, . . . , θK} ∼ Dirichlet(α1, . . . , αK) has the following
PDF in its general form:

f(θ1, . . . , θK ;α1, . . . , αK) =
1

B(α)

K∏
i=1

θαi−1
i , where B(α) =

∏K
i=1 Γ(αi)

Γ
(∑K

i=1 αi

)
Because we are integrating the PDF over the simplex in equation I2 to solve
for I2, the following expression must equal 1 (by definition):

11



∫
1

B(α)

K∏
i=1

xαi−1
i dΘ = 1 or

∫ K∏
i=1

xαi−1
i dΘ = B(α) (1)

Note that if we move the 1
B(α)

outside the integral, we can rewrite the ex-

pression to equal B(α).

Using the PDF of the Dirichlet distribution we can expand:

P (Θ) =
D∏

d=1

P (θd|α) =
D∏

d=1

(
1

B(α)

K∏
k=1

θα−1
d,k

)
(2)

We assume that each hyper-parameter of the K-dimensional Dirichlet dis-
tribution is constant, where α1 = · · · = αK = α, i.e., the vector α =
{α1, · · · , αK} = {α, · · · , α}. By initializing values of α with equal weight,
we assume a non-informative prior.

Recall that:
Z = {zd=1,j=1, · · · zd=1,j=N1 , · · · zd=D,j=ND

}

where Z is a vector representing the topic assignments across the entire cor-
pus, zd=1,j=1 is the topic assignment for the first word in the first document,
zd=1,j=N1 is the topic assignment for the last word in the first document, and
zd=D,j=ND

is the topic assignment for the last word in the last document.

We assume that within each document, topic assignments for words zd,j are
conditionally independent given the document-topic distribution θd. This
assumption stems from the bag-of-words assumption in LDA, where the order
of words is not taken into account. Instead, each word’s topic assignment
depends only on θd and not on the topic assignments of the other words in the
document. We also assume that zd,j|θd ∼ Cat(θd), meaning for each word j
in document d, we sample a single topic zd,j from the categorical distribution
parameterized by θd. With these assumptions in mind, we can write out the
conditional probability of the set of all topic assignments given the set of
document-topic distributions:
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P (Z|Θ) =
D∏

d=1

( Nd∏
j=1

p(zd,j|θd)
)

(3)

Since zd,j|θd ∼ Cat(θd), we have that p(zd,j) =
∏K

k=1(θd,k)
xk

j
where for a

given word, j, out of {xj
k=1, · · · , x

j
k=k′ , · · · , x

j
k=K}, exactly one of xj

k=k′ = 1
and the rest are all zero, i.e., xj

k = 0 where k ̸= k′, so word j belongs to
just one topic. This stems from the categorical distribution because we are
sampling a single topic for the jth word in document d. The sampled topic
k in document d has probability θd,k.

Thus,
Nd∏
j=1

p(zd,j|θd) =
Nd∏
j=1

( K∏
k=1

(θd,k)
xj
k

)
=

K∏
k=1

(θd,k)
∑Nd

j=1 x
j
k (4)

Now,
∑Nd

j=1 x
j
k represents the number of words in document d that were as-

signed to topic k. We will denote this count as C(d, k) or Ck
d , i.e.,

C(d, k) = Ck
d =

Nd∑
j=1

xj
k

We can rewrite equation 4 using this new notation:

Nd∏
j=1

p(zd,j|θd) =
K∏
k=1

(θd,k)
∑Nd

j=1 x
j
k =

K∏
k=1

(θd,k)
C(d,k) (5)

Using the new notation in equation 5, we can substitute into equation 3
to rewrite the equation for the conditional probability of the set of topic
assignments given the set of document-topic distributions:

P (Z|Θ) =
D∏

d=1

( Nd∏
j=1

p(zd,j|θd)
)

=
D∏

d=1

( K∏
k=1

(θd,k)
C(d,k)

)
(6)
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We can now use equation 6 and equation 2 to calculate the probability of the
set of topic assignments:

I2 = P (Z) =

∫
P (Z|Θ)P (Θ) dΘ

P (Z) =

∫ [ D∏
d=1

( K∏
k=1

(θd,k)
C(d,k)

)][ D∏
d=1

(
1

B(α)

K∏
k=1

(
(θd,k)

α−1
))]

dΘ (7)

Since the document-topic distributions, θd, are independent of each other, the
integral over Θ can be decomposed into separate integrals for each document.
Thus, we can rewrite this equation as a product over all documents in the
corpus.

P (Z) =
1

B(α)

D∏
d=1

[ ∫ ( K∏
k=1

(
(θd,k)

α−1+C(d,k)
))

dθd

]
(8)

Using equation 1, we can manipulate this equation to set the integral equal
to the B function with parameter α+Cd.∫ ( K∏

k=1

(
(θd,k)

α−1+C(d,k)
))

dθd = B(α+Cd)

where
Cd = {Ck=1

d , Ck=2
d , · · · , Ck=K

d }

and

B(α+Cd) =

∏K
k=1 Γ(αk + Ck

d )

Γ(
∑K

k=1(αk + Ck
d ))
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Simplifying the probability of the topic assignments in equation 8 using B
notation, we get:

I2 = P (Z) =

∫
P (Z|Θ)P (Θ) dΘ =

1

B(α)

D∏
d=1

B(α+Cd) (9)

Now we will derive I1, the conditional probability of the observed words W
given the latent topic assignments Z. We follow a similar process used to
derive I2.

Recall

I1 = P (W |Z) =
∫

P (W |Z,Φ)P (Φ) dΦ

Note that Φ = {ϕk} = {ϕ1, · · · , ϕK} is a K x V matrix where K represents
the set of topics, and V represents the set of all words. Observe that each
row ϕk = {ϕk,1, ϕk,2, · · · , ϕk,V } is the word distribution for topic k, and each
element ϕk,v of the matrix Φ represents the probability of choosing word v
given topic k. For example, ϕk,1 represents the probability of choosing word
1 given topic k.

Let’s assume ϕk ∼ Dirichlet(β), meaning that for each topic k, we draw its
word distribution ϕk from a Dirichlet distribution with some parameter vector
β. We also assume that the topic-word distributions are independent across
topics. We can now write the probability of the set of topic-word distribu-
tions as the product of probabilities representing each individual topic-word
distribution given the Dirichlet parameter vector β:

P (Φ) =
K∏
k=1

P (ϕk|β)

Using the PDF of the Dirichlet distribution with parameter vector β we can
expand the equation for the probability of topic-word distributions:

P (Φ) =
K∏
k=1

(
1

B(β)

V∏
v=1

(
(ϕk,v)

β−1
))

(10)
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We assume that each word wd,j is generated only based on its assigned topic
and does not depend on the other words in document d. Further, we assume
wd,j|ϕk ∼ Cat(ϕk), meaning given that a word belongs to topic k, its proba-
bility is determined by the categorical distribution parameterized by ϕk. In
general, each word in a document is assumed to be generated by first select-
ing a topic and then sampling a word from that topic’s word distribution
ϕk. Because one word is assigned to the topic, this follows the categorical
distribution.

Given these assumptions, we can write the conditional probability of the
observed words given their topic assignments and topic-word distribution:

P (W |Z,Φ) =
D∏

d=1

( Nd∏
j=1

( K∏
k=1

p(wd,j|ϕk)

))
(11)

Since wd,j|ϕk ∼ Cat(ϕk), we have that p(wd,j|ϕk) =
∏V

v=1(ϕk,v)
xd,j
v where for

a given word, j, in document d, out of {xd,j
v=1, · · · , x

d,j
v=v′ , · · · , x

d,j
v=V }, exactly

one of xd,j
v=v′ = 1 and the rest are all zero, i.e., xd,j

v = 0 where v ̸= v′, as we
are drawing a word v from the topic-word distribution ϕk with probability
ϕk,v.

Continuing from equation 11 and substituting p(wd,j|ϕk) =
∏V

v=1(ϕk,v)
xd,j
v ,

we get

P (W |Z,Φ) =
D∏

d=1

( Nd∏
j=1

( K∏
k=1

V∏
v=1

(ϕk,v)
xd,j
v

))
=

K∏
k=1

V∏
v=1

(ϕk,v)
∑

d

∑
j x

d,j
v

Now,
∑

d

∑
j x

d,j
v represents the number of times word v was assigned to topic

k. We will denote this count as Cv
k .

C(k, v) = Cv
k =

∑
d

∑
j

xd,j
v
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Using this new notation, we can rewrite equation 11 as:

P (W |Z,Φ) =
K∏
k=1

V∏
v=1

(ϕ
C(k,v)
k,v ) (12)

To find I1, the conditional probability of the observed words W given the
topic assignments Z, we can plug in the probability of the set of topic-word
distributions in equation 10 as well as equation 12 into the integral:

I1 = P (W |Z) =
∫

P (W |Z,Φ)P (Φ) dΦ

P (W |Z) =
∫ ( K∏

k=1

V∏
v=1

(ϕ
C(k,v)
k,v )

) K∏
k=1

(
1

B
(
β)

V∏
v=1

((ϕk,v)
β−1)

))

Noting that the topic-word distributions ϕk are independent of each other,
the integral over Φ can be decomposed into separate integrals for each topic.

Thus, we rewrite this equation as a product of integrals over all topics.

P (W |Z) = 1

B(β)

K∏
k=1

(∫ V∏
v=1

(ϕk,v)
β+C(k,v)−1dϕk

)

Using equation 1, we can set the integral equal to the B function parameter-
ized by β +Ck. ∫ V∏

v=1

(ϕk,v)
β+C(k,v)−1dϕk = B(β +Ck)

where
Ck = {Cv=1

k , Cv=2
k , · · · , Cv=V

k }
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Thus, the conditional probability of the observed words W given the topic
assignments Z can be rewritten using the B notation:

I1 = P (W |Z) =
∫

P (W |Z,Φ)P (Φ) dΦ =
1

B(β)

K∏
k=1

B(β +Ck) (13)

Using the probability of topic assignments in equation 9 and the conditional
probability of the observed words given the topic assignments in equation 13,
we can now write the full joint distribution of the observed words and topic
assignments as:

P (W,Z;α, β) = P (W |Z)P (Z) = I1 × I2

=

[
1

B(α)

D∏
d=1

B(α+Cd)

][
1

B(β)

K∏
k=1

B(β +Ck)

]
(14)

3.2.2 Gibbs Sampler

Now that we have derived the joint distribution of words and topics, we have
all we need to derive the conditional distribution of an individual topic for
the Gibbs sampler.

Let Z = {zd,n} = {zd=1,j=1, · · · , zd=1,j=N1 , · · · , zd=D,j=ND
} be a

∑D
d=1 Nd di-

mensional vector where Z denotes the collection of all latent topic variables
zd,n corresponding to all words in all documents.

Let’s also assume we have a Markov Chain X =< Z(0), Z(1), · · · , Z(Niter) >
over the data whose stationary distribution converges to the posterior on the
distribution of Z. Further, let Z = {zd,n} = {zi} for ease of notation.

For a given token, i = (d′, j′), representing the word j′ in document d′, the
Gibbs sampler estimates the conditional probability that the latent topic
variable zi at token i = (d′, j′) is assigned to topic k′ ∈ {1, · · · , K} having
observed all other topic assignments and words. Observe that the conditional
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probability used for Gibbs sampling is simply a fraction of joint probabilities,
one of which we have already derived (the numerator).

P (zi = k′|Z−i,W ) =
P (Z,W )

P (Z−i,W )
=

P (W |Z)P (Z)

P (W−i|Z−i)P (Z−i)p(wi)

Note that Z = {zi, Z−i} and W = {wi,W−i}. To understand the second
equivalence, specifically the denominator, we can first break down:

P (Z−i,W ) = P (W |Z−i)P (Z−i)

using Bayes Rule.

Then, using the definition of conditional independence, which is when two
random variables are independent of each other given the presence of a third
variable, we have:

P (X, Y |Z) = P (X|Z)P (Y |Z)

so

P (W |Z−i) = P (W−i, wi|Z−i) = P (W−i|Z−i)P (wi|Z−i) = P (W−i|Z−i)P (wi)

where w−i and wi are independent of each other given Z−i in the first equal-
ity, and wi is independent of Zi in the second equality because the word at
token i is independent of the topic assignments at all other tokens. This
follows from a previously referenced assumption that each word is generated
only based on its assigned topic and does not depend on other words.

Thus,
P (W |Z−i) = P (W−i|Z−i)p(wi)

so

P (Z−i,W ) = P (W−i|Z−i)P (Z−i)p(wi)
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Now expanding the Gibbs sampling conditional probability,

P (zi = k′|Z−i,W ) =
P (W |Z)P (Z)

P (W−i|Z−i)P (Z−i)p(wi)
∝ P (W |Z)P (Z)

P (W−i|Z−i)P (Z−i)
(15)

Note that the subscript −i denotes all values upon discounting the token at
wi.

Expanding the Gibbs sampler conditional probability in equation 15 using
the joint distribution derivation in equation 14,

P (zi = k′|Z−i,W−i, wi) ∝
P (W |Z)P (Z)

P (W−i|Z−i)P (Z−i)
=

[
∏D

d=1 B(α+Cd)][
∏K

k=1B(β +Ck)]

[
∏D

d=1 B(α+Cd)][
∏K

k=1B(β +Ck)]−i

=

[ ∏D
d=1B(α+Cd)∏D

d=1B(α+Cd)−i

]
×
[ ∏K

k=1B(β +Ck)∏K
k=1B(β +Ck)−i

]
(16)

Thus, the conditional distribution that the ith token will have topic k′ is
proportional to the full joint distribution of the model divided by the joint
distribution considering that the token at wi and its corresponding topic as-
signment did not in exist in the data.

Observing that α remains fixed and i corresponds to the topic and words
{zi, wi = (d′, j′)} at some document d′ and some position j′ in that document,
we can simplify the first term in (15) by canceling the product across all
documents and only considering the document d′:[ ∏D

d=1B(α+Cd)∏D
d=1B(α+Cd)−i

]
=

B(α+Cd=d′)

B(α+Cd=d′)−i

(17)

We are able to simplify because for all documents other than d′, the nu-
merator and the denominator cancel out, as wi will not be excluded in the
denominator.
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Now, we observe what happens to Cd=d′ with or without including the term
at wi = (d′, j′) whose corresponding topic assignment is zi = k′. Recall that
Cd = {Ck=1

d , Ck=2
d , · · · , Ck=K

d } and Ck
d = C(d, k) is the number of words in

document d that are assigned to topic k. We observe:

C(d, k) =

{
[C(d, k)]−i, if k ̸= k′,

[C(d, k)]−i + 1, if k = k′.
(18)

because the number of words in document d that are assigned to topic k
increases by one when we consider the ith token, where k = k′.

Expanding equation 17 by plugging in the definition of B(α) =
∏

Γ(αi)
Γ(

∑
αi)

, we
get:

B(α+Cd=d′)

B(α+ [Cd=d′ ]−i)
=

∏K
k=1 Γ

(
α + C(d′, k)

)∏K
k=1 Γ

(
α + C(d′, k)−i

) × Γ
(∑K

k=1

(
α + C(d′, k)−i

))
Γ
(∑K

k=1

(
α + C(d′, k)

))

Using the delineation noted in equation 18, this equation further simplifies
to (upon canceling out all non-k′ terms):

=

∏K
k=1 Γ

(
α + C(d′, k)

)∏K
k=1 Γ

(
α + C(d′, k)−i

)×Γ
(∑K

k=1\k′
(
α + C(d′, k)−i

)
+ [
(
α + C(d′, k′)−i

)
]
)

Γ
(∑K

k=1\k′
(
α + C(d′, k)

)
+ [
(
α + C(d′, k′)

)
]
) .

=
Γ
(
α + C(d′, k) + 1

)
Γ
(
α + C(d′, k)−i

) ×
Γ
(∑K

k=1\k′
(
α + C(d′, k)−i

)
+ [
(
α + C(d′, k′)−i

)
]
)

Γ
(∑K

k=1\k′
(
α + C(d′, k)

)
+ [
(
α + C(d′, k′)

)
+ 1]

) .

Using the identity Γ(x+ 1) = xΓ(x), we get:

B(α+Cd=d′)

B(α+ [Cd=d′ ]−i)
=

α + C(d′, k′)−i∑K
k=1

(
α + C(d′, k)−i

)
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Similarly, we can simplify the second term in equation 16:∏K
k=1B(β +Ck)∏K

k=1B(β +Ck)−i

=
B(β +Ck=k′)

B(β +Ck=k′)−i

=
β + C(k′, v′)−i∑V

v=1

(
β + C(k′, v)−i

)
where v′ refers to the token, which is assigned to wi.

We can thus simplify the Gibbs sampling update equation for LDA as follows:

P (zi = k′ | Z−i,W−i, wi) ∝[
α + C(d′, k′)−i∑K

k=1(α + C(d′, k)−i)

]
·

[
β + C(k′, v′)−i∑V

v=1(β + C(k′, v)−i)

]
(19)

Sampling from this conditional distribution repeatedly is how Gibbs sampling
approximates the posterior distribution for LDA. Note that this conditional
probability is not the LDA model’s full joint distribution, nor the general
Gibbs sampling algorithm for all contexts, but specifically the Gibbs sampling
method for LDA.

3.3 Posterior on θ and ϕ

We can next compute the posterior distributions for θd and ϕk. These poste-
rior distributions are useful because they allow us to make informed estimates
about the distribution of topics in documents as well as how topics can gen-
erate words.

First, we compute the posterior distribution for θd having observed topic as-
signments zd,n in document d.

We know that the prior θd|α ∼ Dirichlet(α), so the prior probability looks
like:

P (θd) =
1

B(α)

K∏
k=1

(
(θd,k)

α−1

)
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We also know that the likelihood is distributed as a categorical distribution
zd,j|θd ∼ Cat(θd), so the likelihood of document d given θd is:

P (Zd|θd) =
Nd∏
j=1

P (zd,j|θd) =
K∏
k=1

(θd,k)
C(d,k)

using equation 3 and equation 5 to calculate the respective equalities.

Thus, using Bayes Theorem, the posterior on θd is:

P (θd|Zd) =
P (Zd|θd)P (θd)∫

(P (Zd|θd)P (θd))dθd
∝

K∏
k=1

(θd,k)
C(d,k)+α−1

revealing that the posterior on θd follows a Dirichlet distribution parameter-
ized by α+Cd, where θd|Zd ∼ Dir(α+Cd)

We observe that both the prior of the θd random variable and the posterior
are proportional to a Dirichlet distribution, demonstrating that the prior is,
in fact, a conjugate prior to the categorical distribution.

We can now find the expected value of the Dirichlet distributions. These
expectations are extremely useful because they can be used to estimate the
final posterior estimates of the document-topic distribution θd and the topic-
word distribution ϕk after Gibbs sampling stabilizes.

Recall that the expected value of a Dirichlet distribution is given by the
following:

E[Xi] =
αi

α0

where α0 =
∑K

k=1 αi

Thus, the expected value of the probability mass associated to each topic in
document d is:

E[θd,k] =
α + C(d, k)∑K

k=1(α + C(d, k))
(20)
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Equation 20 represents the posterior mean of the proportion of topic k in
document d. After inference (Gibbs sampling), we can interpret this value as
a point-estimate representation of the mixture of topics in each document,
which is crucial for topic-modeling applications such as document classifica-
tion and similarity search (used later in Chapter 5).

Following a similar process used to derive equation 20, we can compute the
posterior distribution for ϕk. We observe that ϕk|Wk ∼ Dir(β +Ck), so:

E[ϕk,v] =
β + C(k, v)∑V

v=1(β + C(k, v))
(21)

Equation 21 represents the posterior mean of the probability that topic k
generates word v. This value provides a concrete topic–word distribution for
each topic, which is useful for interpreting topics.
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Chapter 4

Retrieval-Augmented
Generation

Retrieval-augmented generation (RAG) is a framework that enhances the
output of a large language model by combining an information retrieval sys-
tem with a generative language model. Unlike other language models, which
rely solely on the pre-trained model (parametric memory) to generate out-
puts, RAG also leverages an external knowledge base (non-parametric mem-
ory) to create a “hybrid” model that improves the quality of outputs. An
example of an external knowledge base is a collection of Wikipedia articles
such as the one used in Lewis et al. (2020), which differs from the data used
in the pre-trained model.

There are several ways in which RAG can improve the quality of LLM out-
puts. First, RAG enables the model to learn up-to-date information. For
prompts that require knowledge of the latest news, the original data used
to train the model (parametric memory) would be irrelevant, as the data is
outdated. However, incorporating non-parametric memory via RAG enables
the model to maintain relevancy by incorporating data from dynamically-
updated sources. Second, RAG promotes scalable domain adaptation by
simply swapping the external knowledge base, which can be particularly use-
ful for generating responses that serve specialized domains such as the legal
or medical field. Lastly, and perhaps most importantly, by explicitly con-
ditioning the model to generate responses based on real documents, RAG
can reduce model “hallucinations,” which refers to responses in which the
model generates incorrect or unverifiable information. Overall, RAG has the
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potential to drastically improve language models by dynamically updating
them to reflect changes in the world, making it easier to scale them to reflect
domain-specific knowledge, and reducing hallucinations.

RAG can be thought of as a hybrid approach with two parts: a retriever
(which includes the non-parametric memory) and a generator (which in-
cludes the parametric memory). Below is a visualization from Lewis et al.
(2020) that shows the RAG pipeline:

Figure 4.1: Overview of RAG-based approach. RAG incorporates a retrieval
system pη and a generator pθ to generate a response y to a some query x.

On the left is the retrieval system pη, which leverages dense passage retrieval
(DPR). First, a query x is passed into a query encoder q, which transforms
the query into a query embedding vector q(x). Then, each of the documents
zi in the corpus are passed through a document encoder (not shown) and
transformed into document embedding vectors d(z). Then, Maximum Inner
Product Search (MIPS) is performed among all documents to find the top-k
documents to retrieve z by maximizing the inner product between q(x) and
d(z). The retrieval system is represented as follows:

pη(z|x) ∝ exp(d(z)⊤q(x))

On the right is the generator component pθ(yi|x, z, y1:i−1), which takes the
query x, retrieved documents z, and the previous token y1:i−1 as inputs and
generates some response yi.
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In my thesis, I emulate the model approach in Lewis et al. (2020), in which the
authors leverage both pre-trained parametric and non-parametric memory.
In this paper, the authors incorporate both parametric and non-parametric
memory components that were pre-trained and pre-loaded with extensive
knowledge. In particular, they created a model where the parametric mem-
ory is a pre-trained sequence-to-sequence (seq2seq) transformer model called
BART, and the non-parametric memory is a dense vector index of 21 mil-
lion Wikipedia articles. Although my RAG framework uses different models
than those in the paper, the overall process is similar (described further in
Chapter 5).

4.1 Dense Passage Retrieval

The non-parametric memory in the RAG framework is accessed with a re-
triever called Dense Passage Retriever (DPR), which incorporates a dense-
retrieval system. Introduced in Karpukhin et al. (2020), DPR is able to
learn semantic relationships between words, grouping synonyms and para-
phrases. This differs from term-based systems like tf-idf or BM25, which
simply match queries and passages based on specific words and are unable to
capture underlying semantic relationships. Mathematically, a retriever can
be represented as a function that takes a question x and a corpus C as inputs
and returns a much smaller filter set of texts CF ⊂ C as the output, where
|CF | = k ≪ |C|

R : (x,C) → CF

This hyperparameter k is tuned during the retrieval process to optimize the
number of documents to retrieve when generating a response.

The goal of DPR is to index all text documents to a low-dimensional and
continuous space such that it can efficiently retrieve the top k most relevant
passages to the input query from the entire corpus of M passages, providing
useful information that aids the model in generating a response. DPR uses
two separate encoders in the retrieval process, a passage encoder d(·) and a
question encoder q(·). The passage encoder d(·) maps any chunk of text to
a d-dimensional vector and creates an index for all M passages used for re-
trieval. The question encoder q(·) maps an input question to a d-dimensional
vector as well but retrieves the k most relevant passages, that is, the passages
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which share the most similar vector representations to the question vector.
Similarity is defined using the dot product of vectors:

sim(x, z) = q(x)⊤d(z)

In the next sections, I explore a potential improvement to the retrieval mech-
anism in RAG. I hypothesize that by incorporating LDA as a pre-processing
“filtering” step before retrieval, I can reduce the search space of documents
considered for retrieval. Mathematically, this new retrieval system can be
represented as:

RLDA : (x,CLDA) → Cf

where CLDA is the remaining corpus of documents after LDA filtering has
been conducted and Cf is the final filter set of the top-k documents, where
|Cf | = k. Observe that CLDA ⊂ C and |CLDA| ≤ |C|. The extent to which
|CLDA| is less than |C| depends on the topic-similarity threshold, which is
described in Chapter 5.

Further, note that even though the number of retrieved documents from the
new filter set is the same as before, |Cf | = |CF | = k, the exact documents
chosen for retrieval likely differ. This is the basis of my hypothesis. I con-
jecture that by reducing the search space from C to CLDA, I can find a filter
set of documents Cf that has the potential to improve both model efficiency
and response quality.
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Chapter 5

Methods

This experiment compares the question answering performance of an RAG-
only model against an RAG model that incorporates LDA as a pre-processing
step. Question answering (QA) tasks have served as one of the most popular
benchmarks for language model evaluation, enabling researchers to evaluate
an LLM’s ability to locate, comprehend, and reason over text. There are two
main approaches commonly considered in question answering: closed-book
QA and open-domain QA. In a closed-book QA model, the model only sees
the question and the provided context, which contains the answer. In an
open-domain QA model, the model considers a large corpus of text, which
contains the correct answer. In this experiment, I explore whether I can ex-
tend the capabilities of the deepset/roberta-base-squad2 model from that of
a closed-book QA model to an open-domain QA model.

5.1 Choosing Models

For this experiment, I use both the dual-encoder model all-MiniLM-L6-v2
Wang et al. (2020) and the encoder-only model roberta-base-squad2 Liu et al.
(2019) to comprise the parametric memory for an RAG-based model. In par-
ticular, I use all-MiniLM-L6-v2 to transform each passage of text into a 384-
dimensional embedding vector. Designed as a sentence and short paragraph
encoder, this model converts short passages into embedding vectors that
capture semantic relationships in the text. In addition, I use the roberta-
base-squad2 model to generate responses by extracting answer spans from
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the text. Fine-tuned on SQuAD 2.0 Rajpurkar et al. (2018), a reading com-
prehension dataset consisting of questions posed by crowdworkers on a set of
Wikipedia articles, this model performs well on extractive QA tasks.

For the non-parametric memory, I incorporate the databricks-dolly-15k dataset
Conover et al. (2023), an open source dataset of instruction-following records
generated by Databricks employees in several categories such as summariza-
tion, QA, and information extraction. Additionally, I use Facebook AI Sim-
ilarity Search (FAISS) Douze et al. (2024) to efficiently compute an inner
product search for the most relevant documents.

5.2 LDA Filtering Step

To incorporate the LDA pre-processing step, I introduce a topic-similarity
threshold, which computes the cosine similarity between topic-distribution
vectors and only keeps those whose score meets the threshold, serving as a
filtering step. Cosine similarity measures how similar two non-zero vectors
are in a multi-dimensional space. In this context, cosine similarity measures
how similar the topic-distribution of each document in the corpus is to the
topic-distribution of the question. Cosine similarity is calculated as follows:

sim(q,d(i)) =
q · d(i)

||q|| ||d(i)||

where q = (q1, q2, · · · , qk, · · · , qK) is the question’s topic-distribution vector

and d(i) = (d
(i)
1 , d

(i)
2 , · · · , d(i)k , · · · , d(i)K ) is the ith document’s topic-distribution

vector. Note that qk represents the probability that topic k is present in the
question, and d

(i)
k represents the probability that topic k is in document i.

We also assume that the number of topics equals K (I experiment with vari-
ous values when tuning this hyperparameter, which is described later in this
section). A high cosine similarity value would indicate that the question and
the document have similar topic distributions, whereas a low value would
indicate that the question and document are dissimilar.
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5.3 F1 Score

To evaluate model responses, I use a metric called F1 score, which measures
the harmonic mean of precision and recall. Precision measures the fraction
of values that belong to a positive class (true positives) out of all the values
which are predicted to belong to the positive class (true positives + false
positives). In the context of this experiment, precision essentially measures
how many tokens belong to the correct answer out of all the tokens generated
in the model’s response. Precision is calculated below:

Precision =
Number of True Positives (TP)

Number of True Positives (TP) + Number of False Positives (FP)

Recall measures the fraction of values predicted to be positive (true positives)
out of all values that truly belong to the positive class (true positives +
false negatives). In this context, recall measures how many tokens were
successfully predicted out of all the tokens in the correct answer. Recall is
calculated below:

Recall =
Number of True Positives (TP)

Number of True Positives (TP) + Number of False Negatives (FN)

F1 score incorporates both precision and recall and calculates their harmonic
mean:

F1 = 2× Precision× Recall

Precision + Recall

F1 score provides a metric that measures a model’s ability to generate cor-
rect tokens, essentially matching the tokens in the correct answer (recall),
while avoiding spurious ones (precision), making it a useful metric for model
evaluation. By not fully penalizing incorrect tokens, this metric is both more
flexible and more informative than more rigid metrics like exact match.
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5.4 Tuning Model Hyperparameters

In creating the RAG model that incorporated LDA (which I refer to as
LDA+RAG), there were three primary hyperparameters to tune: the number
of topics (num topics), the topic-similarity threshold (threshold), and the
number of documents to retrieve (k). To choose the best hyperparameters
for the LDA+RAG model, I performed the following grid search and then
selected the configuration that resulted in the highest F1 score:

• num topics : {10, 20, 30}

• threshold : {0.3, 0.5, 0.7}

• k : {10, 50, 100}

I intentionally kept the range for the number of topics relatively small to
encourage interpetability; the more topics, the less interpretable each topic
is. Further, I experimented with various threshold values and decided to
limit the highest threshold to 0.7 because when I experimented with a higher
threshold value of 0.9, there were some queries for which no documents passed
the threshold. Lastly, I chose the range of k values based on Karpukhin et al.
(2020), which observed that the optimal value of k was usually small, where
k ≤ 100. I then compared results from the LDA+RAG model to an RAG-
only baseline model that uses the same respective k value. For example, if
the grid search for the LDA+RAG model found that k = 10 was the optimal
top-k value for a certain sample of documents, I would use this same value
for the RAG-baseline model, allowing for fair comparisons.

5.5 High-level Pipeline

Below is a high-level pipeline of the process used to create and compare the
RAG-based models.

1. Document Preparation

• Split text corpus into manageable chunks (documents)

• Embed all documents into a standard vector index (FAISS) for a
“baseline” retriever
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2. Topic Modeling for Filtering

• Train an LDA model on these documents to get a topic distribu-
tion for each

• Infer the query’s own topic-distribution vector via the same LDA

3. Enhanced Retrieval Pipeline

• LDA filter : Compute cosine similarity between the query’s topic-
distribution vector and each document’s topic-distribution vector;
discard anything below a chosen threshold

• FAISS : Build a temporary FAISS index over only the remaining
topically relevant documents CLDA and retrieve the top-k docu-
ments Cf from that smaller set

RLDA : (x,CLDA) → Cf

4. Answer Generation

• Concatenate query with the k most relevant documents

• Pass this into the QA model to generate an answer

5. Comparison to Baseline RAG Model

• Run the same QA model over the FAISS retriever for the entire
corpus without filtering C and retrieve the top-k documents CF

(baseline RAG-only model)

R : (x,C) → CF

• Compare F1 score and runtime between LDA+RAG model vs
baseline RAG model
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Chapter 6

Results

6.1 Results on Abridged SQuAD 2.0 Dataset

First, I evaluate the LDA+RAG model on an abridged version of the SQuAD
2.0 dataset to serve as a proof of concept. Because the entire version of
SQuAD 2.0 includes entries in which the correct answer is an empty string,
it is considerably more difficult for the model to perform well because the
model always outputs some response, automatically penalizing it for all such
entries. Thus, I reduced the dataset to only include entries where the answer
is a non-empty string of text.

Because the abridged SQuAD 2.0 dataset is still quite large (11.9k rows), I
chose to evaluate the model on random samples from SQuAD 2.0, each with
size n = 100. To ensure these samples are reproducible, I chose three random
seeds. I then performed a grid search over the model’s hyperparameters (as
described in Chapter 5) and selected the configuration that produced the
highest F1 score for each seed. The optimal configurations for each sample
are shown below, where s represents each seed:

Table 6.1: Best hyperparameter configurations for LDA+RAG model

num topics threshold k F1 score

s = 1 20 0.7 10 84.64
s = 47 20 0.5 50 87.39
s = 99 30 0.7 100 83.19
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We can observe some patterns from these configurations. First, it seems
as if the optimal number of topics chosen varies between 20 to 30, suggest-
ing that 10 topics might be too few. This could be due to the size of the
databricks-dolly-15k dataset, which covers a wide variety of subjects, leading
to better performance over more topics. Second, the optimal value for the
topic-similarity threshold appears to be between 0.5 and 0.7, indicating that
a relatively high threshold leads to better performance. This result supports
our hypothesis that retrieving topics based on higher levels of topic similarity
contributes to a higher F1 score, which we will expand upon later. Lastly,
the optimal values of k differ for each sample, suggesting that k should be
tuned on a case-by-case basis.

I next compare the average F1 score of the LDA+RAG model against the
RAG-only baseline model (using the same k values) to determine the effect
of the LDA pre-processing step on performance. I exclude results from the
roberta-base-squad2 model in this section. The results are shown below:

Table 6.2: F1 score by model

LDA+RAG RAG

s = 1 84.64 81.19
s = 47 87.39 78.49
s = 99 83.19 69.52

We observe that the LDA+RAG model outperforms the RAG baseline model
in every sample, demonstrating the model’s robustness across varying sets of
questions. These results suggest that incorporating LDA as a pre-processing
step leads to a higher F1 score on average, indicating that incorporating
LDA improves model performance. By incorporating LDA as a filter before
retrieval, the model is able to remove noise that would otherwise be ignored
in the baseline RAG model. Further, by incorporating cosine similarity in
addition to the FAISS search, the LDA+RAG model leverages two different
similarity metrics that could isolate documents whose semantic content more
closely aligns with the question.

It is interesting to note the disparity in the ranking of F1 scores between the
two models among the different samples: s = 47 results in the highest F1

score for the LDA+RAG model, whereas s = 1 results in the highest F1 score
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for the baseline RAG model. This disparity could be due to the influence of k
for the baseline RAG model. As k increases, the performance of the baseline
RAG model becomes increasingly worse. The decrease in F1 score from s = 1
(k = 10) to s = 99 (k = 100) is much larger than the decrease from s = 1
(k = 10) to s = 47 (k = 50). This accentuated drop-off in performance for
the baseline RAG model could be because there is more noise associated with
an increased number retrieved documents; the likelihood of retrieving irrel-
evant documents increases, which can reduce the signal from the provided
context. However, the LDA+RAG model seems to avoid this steep drop-off
in performance because the retrieved documents are more relevant (and the
number of retrieved documents might even be less than k if the number of
documents that pass the threshold is less than k), so the model is more likely
to find the correct answer in the text.

In addition to comparing F1 scores between models, I was curious to see
whether including the LDA step reduced the amount of time needed to pro-
cess each query. To test this question, I timed how long it took each model
to process each query in each of the samples and calculated the average
processing time per query. The results are shown below:

Table 6.3: Average time processing each query (in seconds)

LDA+RAG RAG

s = 1 0.0169 0.0795
s = 47 0.0557 0.3453
s = 99 0.1025 0.6747

We notice that for each sample, the LDA+RAG model has a substantially
shorter average query processing time than the baseline RAG model. This
makes sense because the search space of documents for retrieval is smaller
after LDA step is performed. Observe that as k increases, the average query
processing time increases, as more documents will be retrieved for each query,
increasing the amount of time it takes to generate a response. However, it
is important to note that this experiment was only focused on the query
processing time. If we factor in the time taken to perform the LDA pre-
processing step, the overall runtime for the LDA+RAG model would be
longer than the runtime for the baseline RAG model.
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6.2 Comparing Results to Base QA Model

Next, I compare the performance of the RAG-based models in the experiment
to the roberta-base-squad2 model (which I refer to as the Base QA model).
In the previous section, I excluded results from the Base QA model because,
unlike the RAG models, the Base QA model does not incorporate a retrieval
component and is not fine-tuned on an external knowledge base. Instead, the
only input the model sees is a question and context paragraph, from which
the answer is chosen. Because the model does not incorporate nonparametric
memory, there is no added “noise” from external documents (such as those
in the databricks-dolly-15k dataset), so the model has a higher chance of
extracting the right answer. As such, the Base QA model outperformed the
RAG models in both accuracy and runtime, which is shown below:

Table 6.4: F1 score

LDA+RAG RAG Base QA

s = 1 84.64 81.19 91.18
s = 47 87.39 78.49 92.16
s = 99 83.19 69.52 90.89

We observe that the Base QA model outperforms the RAG models in F1

score for every sample. The pattern of scores for the base model follows that
of the LDA+RAG model: the scores from the s = 47 sample are highest,
followed by those from s = 1, and then those from s = 99. This result stems
from the fact that the Base QA model has a higher chance of extracting the
correct answer because it only sees the provided context, whereas the RAG-
based models sift through thousands of additional documents, introducing
considerably more noise.
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Table 6.5: Average time processing each query (in seconds)

LDA+RAG RAG Base QA

s = 1 0.0169 0.0795 0.0083
s = 47 0.0557 0.3453 0.0080
s = 99 0.1025 0.6747 0.0083

The above table suggests that the Base QA model has a much faster average
query processing time than each of the RAG-based models. This makes sense
because the Base QA model only considers the context paragraph, whereas
the RAG models iterate through hundreds, if not thousands, of additional
documents. In addition, it is interesting to note that the Base QA model
has a stable processing time regardless of sample; this differs from the RAG
models, which have processing times that are dependent on the value of the
top-k parameter.

6.3 Extending Results to Full SQuAD 2.0 Dataset

This section includes results from the model evaluated on the full SQuAD
2.0 dataset. Recall that the full dataset includes entries in which the correct
answer is an empty string, so it is much more difficult for the models to
perform well because they all output some response (leading to an F1 score
of 0 for all such entries). As such, the average F1 scores for each of the models
were substantially worse than the F1 scores shown earlier for the condensed
dataset. With that being said, these results follow the same pattern as those
previously, where the Base QA model performs best, the LDA+RAG model
performs second-best, and the baseline RAG model performs worst for both
F1 score and average query processing time. The results are shown below:

Table 6.6: Best hyperparameter configurations for entire dataset

num topics threshold k F1 score

s = 1 20 0.5 50 41.61
s = 47 30 0.7 10 36.80
s = 99 30 0.5 50 46.39
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Table 6.7: F1 score for entire dataset

LDA+RAG RAG Base QA

s = 1 41.61 35.37 43.83
s = 47 36.80 30.84 37.97
s = 99 46.39 41.99 53.32

Table 6.8: Average query processing time for entire dataset

LDA+RAG RAG Base QA

s = 1 0.056 0.341 0.0080
s = 47 0.017 0.079 0.0079
s = 99 0.054 0.339 0.0080
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Chapter 7

Discussion

The results from this experiment suggest that using LDA as a pre-processing
step before retrieval leads to higher F1 scores on average and faster pro-
cessing time per query when compared to a baseline RAG model. As such,
incorporating LDA in future RAG-based models seems like a plausible option
for transforming a closed-book QA model into an open-domain QA model.
Recall that in a closed-book QA approach, the model only sees the question
and the provided context, which contains the answer. In an open-domain
QA approach, the model considers a large corpus of text, which contains
the answer. In this experiment, I effectively extend the capabilities of the
deepset/roberta-base-squad2 model from that of a closed-book QA model
(which only sees the SQuAD 2.0 dataset) to an open-domain QA model,
which learns from the nonparametric databricks-dolly-15k dataset.

Although I was able to incorporate LDA to improve model performance,
there were limitations in my experiment that placed a ceiling on how much
I could improve the model. Many of these limitations revolved around time
and computation constraints. For example, to choose the optimal hyper-
parameters for my model, I performed a grid search over only 27 possible
permutations (3 options for each of the 3 parameters), so my current config-
uration of hyperparameters might not have been the most optimal. Had I had
more time and access to computational resources, I might have performed a
more extensive grid search or implemented cross-validation to select the op-
timal hyperparameters. In addition, I could have tuned the model on a more
comprehensive and relevant external database such as wiki dpr, which might
have increased model performance even more. Lastly, rather than evaluating
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my model on random samples of the abridged SQuAD 2.0 dataset, I could
have evaluated it on the entire abridged dataset.

As an open-domain QA model, there are a plethora of future directions that
can improve model performance. One idea could be to not only train the
model on a more comprehensive dataset but to also test this model on other
benchmark evaluation datasets besides SQuAD 2.0 such as Natural Ques-
tions and TriviaQA. A different method to improve model performance could
be to prioritize the minimization of hallucinations by fine-tuning the model
on datasets that provide references and testing how well the model utilizes
these references. Lastly, and perhaps more feasibly, a logical progression from
this experiment is to combine other topic-modeling algorithms such as NMF
or LSA with RAG and compare performance against the LDA-based model.
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